新闻中心

+

世界第一足球联赛:英超上座分析(英超上座率解析:全球顶级联赛的现场热度)

发布时间 :2026-01-05

Analyzing stadium utilization

I'm diving into stadium utilization, looking at metrics like load factors, sell-out rates, and ticket prices. For example, Anfield is expanding to 61k, while Old Trafford caps at about 74k. The average attendance for the 2022-23 EPL season was roughly 40,234, though a smaller stadium like Kenilworth Road affects overall numbers. I've noted high sell-out rates and significant waiting lists for major clubs. It could be interesting to provide a reproducible notebook if needed.Drafting a mini-report outline

I'm thinking about creating a mini-report with several sections, like key metrics, comparative context with leagues like Bundesliga and La Liga, and a 5-year trend analysis. I'll also consider stadium capacity, utilization, revenue per seat, and club distribution. It's important to note scheduling impacts and developments like the new Everton stadium. I need to ask the user how in-depth they want it and if they have specific data or timeframe in mind. I'll draft in Chinese and keep formatting simple, using bullets if needed.Examining league attendance trends

I need to note that even though the EPL is considered the "world's number one league," its average attendance is lower than the Bundesliga. However, the EPL excels in utilization and global demand. A club-level snapshot shows top attendances with Man United around 73k, followed by teams like West Ham and Tottenham at 62k. Many clubs reach sell-out rates near 99%, but smaller stadiums like Bournemouth and Luton pull down the average. Ticket prices are higher, with significant matchday revenues, and trends indicate a strong post-COVID bounce back in attendance.Creating a visualization plan

I’m thinking about proposing a visualization and analysis plan for match attendance. If they have match-by-match attendance data, I can calculate occupancy rates and examine factors like opponent quality, kickoff time, weather, and TV choices. For clubs or partners, recommendations could include capacity expansion and dynamic pricing strategies. I need to structure this neatly in sections with titles like "英超上座分析" and include key takeaways. Each section will have 4-6 concise bullet points to keep it clear and actionable.Offering data options

I’m thinking about suggesting that we pull authoritative data from sources like Transfermarkt or the EFL official, but we’ll need network approval first. I could ask if they want me to fetch the last five seasons of attendance data and create visualizations for them. Including a sample code snippet for reading CSV files with pandas might be helpful, but I’ll keep it concise. I’ll note data accuracy warnings and define the "世界第一" concept relating to revenue and broadcast reach, while also acknowledging that attendance average isn't the top but occupancy and demand are elite.

英超上座分析(简版)

  • 英超并非平均上座最高(德甲更高),但综合“上座率、等候名单、票价与全球需求”,英超是商业与需求最强的联赛之一。
  • 近年总入场与上座率创高位:多数俱乐部联赛场均上座接近或达到可容纳上限,上座率常见在97–99%。
  • 平均上座受“小场馆”影响明显:如伯恩茅斯、卢顿、布伦特福德等容量小但场场爆满,会拉低联赛场均却不代表需求弱。
  • 大球场拉高总量:曼联(74k)、西汉姆(62k)、热刺(62k)、阿森纳(60k)、纽卡(52k)、利物浦(扩容后61k)、曼城(~53k)等是总人次支柱。
  • 票价与渗透:英超票价与非比赛日消费高,单位座位收益全球领先;大量季票与等候名单使临门购票占比低、波动小。

近5季趋势(概览)

  • 2021-22:疫情后强力回归,上座迅速恢复至接近满座。
  • 2022-23:总入场与平均上座创新高,售罄率极高。
  • 2023-24:总体维持高位,卢顿等小容量球队升入使“均值”略降但“利用率”更紧。
  • 杯赛与欧洲赛:强队主场杯赛平均上座与定价策略差异大,但总体需求稳健。

供给侧:容量与设施

  • 新/扩建带动供给:热刺新球场已释放高端座位与非比赛日收入;安菲尔德近年扩容提升池容量;多队评估扩容或重建。
  • 安全与配置:部分球场试点安全站立区,提高氛围并在安全前提下优化可用容量结构。
  • 城市与交通:伦敦与大城市俱乐部因交通与人口密度获益,周末早/晚时段更易满座。

需求侧:决定因素(可量化)

val

  • 比赛强度与对手吸引力:强强对话、德比与关键战显著拉升实际到场与二级市场价格。
  • 开球时间与电视选择:晚间/黄金档通常更好;工作日与不便出行时段略弱但英超弹性高。
  • 战绩与星度:短期排名、球星出场、转会窗口热点与新援首秀均影响上座与价格。
  • 票价与动态定价:高价位下仍“满座”反映低价弹性与强会员体系;家庭/青少年票与无障碍配额影响结构。

俱乐部分布(示例)

  • 超大容量且高上座:曼联、热刺、西汉姆、阿森纳、利物浦、纽卡。
  • 小容量但满负荷:伯恩茅斯、布伦特福德、卢顿;对“均值”拖累但对“上座率”贡献极高。
  • 扩容潜力:多家俱乐部有中长期扩容/重建计划,若兑现将进一步抬升联赛总入场。

与他联赛对比

  • 德甲:平均上座常年更高(更大容量与廉价票文化),但英超上座率与单位座位收益普遍更高。
  • 西甲/意甲/法甲:头部俱乐部强,联赛层面上座与利用率整体略低于英超,波动更大。

数据工作建议(可为你落地)

  1. 赛季/轮次层级
  • 指标:实际到场、可售容量、上座率、售罄率、对手强度、开球时间、电视转播、票价区间。
  • 结果:联赛与俱乐部层面的上座率曲线、对手与时段的边际效应。
  1. 俱乐部层级
  • 指标:场馆容量分布(普通/待客/高端票)、季票占比、等待名单、二级市场溢价。
  • 结果:供需张力雷达图、扩容与动态定价的收益情景。
  1. 模型与可视化
  • 回归/分层模型:上座率 ~ 战绩、星度、对手、时段、天气、价格。
  • 可视化:席位利用热力(分区)、对手吸引力曲线、价格弹性区间。

需要的数据与选择

  • 有现成数据:我可基于你提供的比赛级上座与容量CSV做清洗、建模与图表。
  • 无数据:我可抓取近5季英超逐场上座与容量数据并产出Notebook与可视化(需要你允许联网),或使用公开聚合数据源(如官方/比赛数据网站)。

你希望我:

  1. 直接写一份可复用的Python分析脚本/Notebook(你提供或我抓取数据)
  2. 做一页精炼可视化看板(Plotly/Matplotlib)
  3. 先锁定具体赛季与俱乐部,给出对比结论与运营建议

告诉我你的赛季范围与是否允许我联网抓取数据,我就开工。

×
全国服务热线 : 0769-6443554